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Solutions are obtained to linearized asymmetric heat-conduction prob-
lems for thin- and thick-walled tubes, with consideration of the radi-
ation inside the tubes. It is shown that linearization is permissible.

The heat-conduction problem involving asymmetric
heating of thick-walled tubes was solved in [1] for gen-
eral nonuniform boundary conditions, If the clearance
of the tube is filled out with adiathermal medium, heat
transfer will occur between portions of the clearance
which differ in temperature. A similar phenomenonis
encountered also in the design of hollow flight vehicles.

It is assumed that the degree of blackness of the
wall material is unity.

Let us examine the radiation of the asymmetrically
heated clearance of an infinitely long cylindrical tube
(Fig. 1).

The density of the heat flux emitted by the areadF;
onto dF, is equal to [2]
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Considering the ratios between the segments and
angles in a circular cylinder, instead of (1) we get

4
O'T1
[«

o (2)

cos? % d0du.

dgy, = OSn——g+cP

Fig. 1. Scheme for deriving an expression for the heat

flux density imparted to an area element dF; (i.e.,also

to a surface unit of strip I} by the remaining portion of
the clearance of an infinite tube.
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The expression for the flux dq,, emitted by dF, onto
the surface area dF, differs from the expression for
dqy, in that T is replaced by T,. Theheat flux imparted
to a unit surface area on dF; by the entire tube clear-
ance is obtained by integrating the difference (dqy —
— dgy,)
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Let us compare (3) with the following linearized ex-
pression:
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where the mean heat-transfer coefficient in.the clear-
ance is taken as
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Fig. 2. Comparison of expressions (3) and (4) for T(¢)

= 1273 + (A/2)cos ¢: a) solid lines denote changes in gy

(in W/m?) according to (3); points denote changes in q¢

according to (4); b) changes in relative error (in %)

£(0) = 10%[qr(¢) — qe(@)]1/ar(0) along the tube perimeter:

1) A = 400°K, 2) 830°K, 3) 250°K, 4) 200°K, 5) 150°K,
6) 100°K, 7) 60° K, 8) 20°K.
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The comparison between (3) and (4) for T(p) =
+ (A/2)cos ¢ is given in Fig. 2. Since the maximum
error occurs for ¢ = 0, the influence of T and A on
the value of £(0) is shown in Fig. 3. From the figure,
it can be seen that for values of A and T, frequently
encountered in practice, substitution of (4) for (3) is
admissible.

1. Thin~walled tube, Considering (4), the differen-
tial heat-conduction equation for a thin-walled tube has
the form
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The function T(¢, 1) must satisfy the condition T(¢, 7) =
= T(¢ + 27, 7). The initial conditions are taken in the
form T(¢, 0) = T{(¢). Functions Q(¢, 7) and Ti(¥)
must be expandable into Fourier series, The form of
Q(¢, 1) and M(1) depends on the type of boundary con-
ditions at the surfaces.

If the solution to (5) is sought in the form

T(p, 7) = i [uld (tycosme + u,‘,? (v)sinm g}, (6)

m=0

wherem =0, 1, 2, 3, , then the expressions for
u (1) (i = 1, 2) derive from ordinary differential equa-
tions which are obtained by substituting (6) into (5).
Finally we get
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where em = 2form = Oandey = 1form = 1, 2, 3,

1)(q)) =cosmy, K](m)(co) = sinm @,

2. Thick-walled tube, The differential heat conduc-—
tion equations and the initial and boundary conditions
at the outer surface are taken from [1]. The boundary
condition at the inner surface has the form
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The solution of the problem is sought in the form

t(r, @, 1) =

= V [ (7, 2)cosmo + o2 (r, 1)sinmgl,
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wherem=0,1,2,3,.... After expansion of the func-
tions Q(r, ¢, 7, ¥(¢, 1), and P(¢, 7) into Fourier se-
ries, and having substituted (9) into the heat-conduction
equation and the boundary conditions, we get a system
which does not contain an integral in the boundary con~
dition at the inner surface, Further, in order toreduce
the boundary conditions to homogeneous conditions,
we represent vgl)(r, Ty (i = 1, 2) in the form
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Fig. 3. Maximum error £(0) resulting from
the substitution of (3) for (4) as a function
of the maximum temperature difference A
and mean temperature T, of the inner tube
surface for T(¢) = Ty + (A/2)cosg: 1) Ty =
=473° K, 2) 773° K, 3) 1073° K, 4) 1273°K,

5) 1373° K, 6) 1473° K, 7) 1573° K.



Data Computed from (17) with Allowance (@ > 0) and Without
Allowance (o = 0) for the Radiation Inside the Tube Clearance

- . | X
s 8 a, W/m? «deg x 3 "1-:
I N I B 7 e I I s
S R ¢ lutjsoc| | g e
8 Fon e = initial | Final | mean | < & b
& < B : ~ [ < |
1 273 0 573 10.52 | 80.5( 162 4.6( 43 23.8] 598.6| 547.4| 51.2
273 0 573 ]0.52 | 80.5| 162 0.0] 0.0{ 0.0]| 599.4} 546.6| 52.8
2 573 | 51.2| 873 |0.662]102.5] 108 | 43 151 97 923.7] 822.3|101.4
573 | 52.8] 873 {0.662[102.5{ 108 | 0,0{ 0.0] 0.0| 931.4] 814,6/116.8
3 | 873 {101.4] 1173 {0.93 |144 72 151 |368 |259.511238.6{1107.4/131.2
873 |116.8] 1173 }10.93 | 144 72 0.0 0.0] 0.0{1275.8{1070.2| 205.6
11’(‘) dz 1 d, m 2] efficient & over each section), Consequently, for the
r dr " second and subsequent sections, we have Tj(g) =
- | df ot = TV + (1/2)Aj cos ¢. In this case, for a thin-walled
+ @8 — byl { 4 f,,,], (15) tube, from (6)=(7), we have
rodr

qgl)(r,T), ;Dﬁ) (1), ¢21) (1), y(l)(r) are the coefficients
of the Fourier series expansions in Q(r, ¢, 7), ¢;(¢, 7),
Yol@, 7) functions and in the initial temperature distri-
bution in the tube wall, respectively. The functions
zm(r) and fy,(r) must satisfy the boundary conditions
(13*)—(14*)f in [1], requiring only that b; appearing
in them be replaced by [b; + &4m?/(1 + 4m?)]. For z,(r)
and fy(r), it is advantageous to take the functions ob-
tained in [1] and for zy,(r) and f,(r), the functions by
means of which the terms enclosed in the last two
brackets in (15) are transformed either to zero or to
a constant other than zero.

Since problem (11)—(14) is analogous to (16*)—(19%)
in {1}, the final form of the solution will be
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Mm(n, ), My, n(r), and pm ,n are determined as in [1],
but everywhere b, + oz4m2/(1 + 4m?%7] must be substi-
tuted for by. In [1], printing errors have escaped the
attention of the author: Ay p and By pnfrom (26%) must
be divided by R,, while the factor (Zmal/ym n) infront
of the parentheses in the third line of (28*) must be
additionally divided by w.

Example. It is required to determine the tempera-
ture field of a tube heated from the outside only by a
heat flux gq(¢) = q; + q$ )cos ¢; the material is St. 20
steel, R, = 0.075 m, 6 = 0.0075 m; g, = 108 000, qi!) =
= 1390 W/m?, T; = 273° K. Computation will be per-
formed by sections (averaging the thermophysical
characteristics of the steel and the heat transfer co-

—7v 1 B8s %
T(p, ©)=Ty + 5 cosqpexp(—D'c)—}-C 55
gt cos g
+ [l —exp(— D) ——F—,
Ryk? 5 c¢v8

The sequence and results of computations from (17)
for @ > 0 and @ = 0 are given in a table from which it
can be seen that with increasing temperature, neglect
of radiation inside the tube leadstoappreciable errors.
This is further aggravated by the fact that o increases
rapidly with increasing temperature, while the ther-
mal conductivity of the steel decreases [3].

NOTATION

T, and T, are the surface temperature of the areas
dF, and dF,, respectively; p is the spacing between
the centers of the areas dF, and dF,; R, and R, are
the inner and outer radii of the tube, respectively; T
and t are the instantaneous temperatures of a thin~ and
thick-walled tube, respectively; r, ¢, and 7 are the
instantaneous radius, angle, and time; o is the radia-
tion constant of an absolute blackbody (o ~ 5.7 W/m?/
/°KY; o is the mean heat-transfer coefficient of the
entire tube clearance and the strip with the angular
coordinate ¢; a and A are the thermal-diffusivity and
thermal-conductivity coefficients; cand y arethe mean
specific heat and specific weight of the tube material;
6 = (Ry ~ Ry) is the wall thickness of the tube; k=1 —

e 5/2R2, w = Rl/RZ‘
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